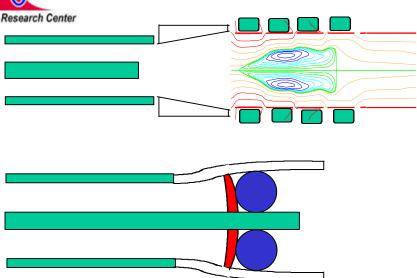



## **Types of Plasma Propulsion**

- Two major types of plasma propulsion
- Type I: Indirect Drive




• Type II: Direct Drive





### Compact Toroid Plasma Thruster



#### Description

- The Compact Toroid Plasma Thruster is a highpower, high variable impulse, high efficiency, electromagnetic plasma thruster
- Exploits the stability of self-organized plasma states (compact toroids) to produce long and efficient acceleration thus attaining high velocity and high kinetic energy
- Uses the Lorentz force for accelerating the plasmoids in both the directly coupled mode and in the inductive mode

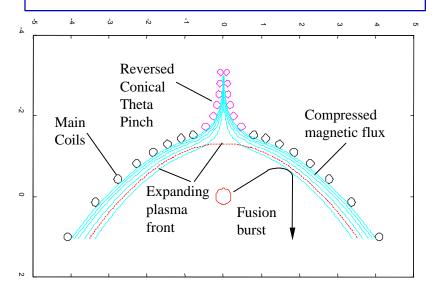
#### Application(s)

- Significant reduction in cost and trip time in planetary travel
- Enhance fast robotic and human access to the planets: large cargo and human missions
- Provide the needed high-power and high efficiency electric rocket for solar electric or nuclear electric propulsion

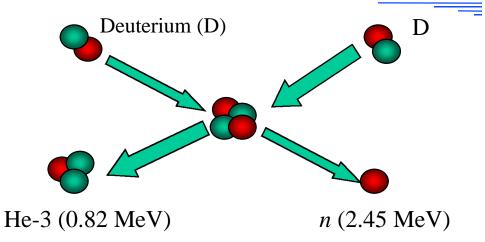
#### General benefit(s)

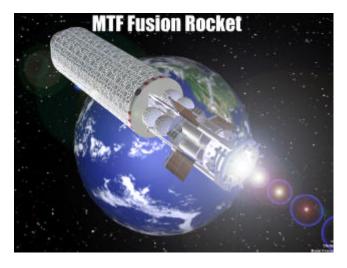
- High efficiency
- Scalable to extremely high power (MW's)
- High speeds (50-100 km/s) can be attained




# **Fusion Propulsion**

### The fusing of atomic nuclei:


$$D + D \rightarrow {}^{3}He (0.82 \text{ MeV}) + n (2.45 \text{ MeV})$$


$$D + D \rightarrow T (1.01 \text{ MeV}) + p (3.03 \text{ MeV})$$

$$D + T \rightarrow {}^{4}He (3.52 \text{ MeV}) + n (14.06 \text{ MeV})$$



Fusion produces a high-temperature plasma, ideal for producing thrust directly, without the intermediate mass-intensive step of producing electricity

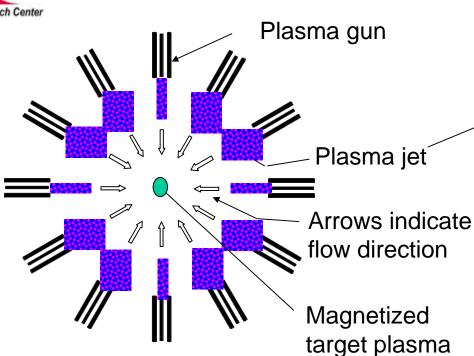




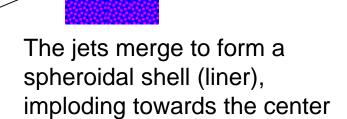
Jet power: 2 GW, Dry mass: 50 tons

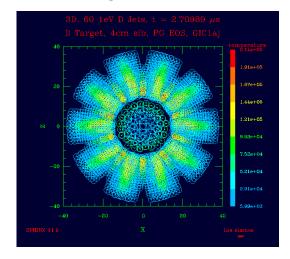
Isp: 500 ~ 77,000 s

Thrust: 2.7 tons - 100 tons Trip time to Mars: 1 month




## Differences between Fusion for Propulsion vs Terrestrial Electrical Generation


| Propulsion                  | Terrestrial Power                         |
|-----------------------------|-------------------------------------------|
|                             | Generation                                |
| Conversion of fusion energy | Conversion of fusion energy               |
| to <b>thrust</b>            | to <b>electricity</b>                     |
| Mass per unit jet power     | Cost per unit electrical energy           |
| Open cycle                  | Closed cycle                              |
| Vacuum is a natural         | Vacuum needs to be                        |
| environment in space        | generated                                 |
| NASA can use it NOW!        | The need depends on:                      |
|                             | <ul> <li>Other energy supplies</li> </ul> |
|                             | • Environmental concerns                  |




## **Magnetized Target Fusion**



 An approximately spherical array of jets are fired towards the compact toroids (~ 200 km/s)





3-D hydrodynamics modeling results indicate plasma liner formation and compression of target plasma to fusion conditions



### **Magnetized Target Fusion with Plasma Liner**



- Physics exploratory experiment underway
- Reproducible initiation of plasma in time ( $\Delta t < 1 \,\mu s$ ) and space ( $\Delta z < 1 \,cm$ ) demonstrated in a high-power plasma thruster, with the use of 6 trigatrons
- Accelerated 0.2 mg of plasma to 50 km/s
  - Max. thrust of ~2000 N in a pulse of 10 μs
  - Isp  $\sim 5,100 \text{ s}$





- High-speed photographs of the plasma jet
- Taken with different shots with different time delays
- The jet moves from left to right
- The well-collimated nature of the jet is apparent